

scilink.ru, 2021

Литература

- Борисенко, В. Наноэлектроника: Учеб. пособие / В. Е. Борисенко, А. И. Воробьёва, А. Л. Данилюк, Е. А. Уткина. −
 2-е изд. − М.: БИНОМ. Лаборатория знаний, 2013. − 366 с.
- Драгунов, В. Основы наноэлектроники: Учеб. пособие / В. П. Драгунов, И. Г. Неизвестный, В. А. Гридчин − М:
 Логос, 2006. − 496 с.
- Щука, А. Наноэлектроника (2-е издание). − М.: БИНОМ. Лаборатория знаний, 2012. − 342 с.
- □ Елисеев, А. Функциональные наноматериалы / А. Елисеев, А. Лукашин. М: ФИЗМАТЛИТ, 2010. 456 с.
- о **Пул, Ч.** Нанотехнологии / Ч. Пул, Ф. Оуэнс. М.:Техносфера, 2005. 336 с.
- Нанотехнологии в электронике / Под. ред. Ю. Чаплыгина. М.: Техносфера, 2005. 448 с.
- **Плотников, Г.** Физические основы молекулярной электроники. М.: Физический факультет МГУ, 2000. 164 с.
- о **Гапоненко, В.** Оптика наноструктур / С. В. Гапоненко, Н. Н. Розанов, Е. Л. Ивченко и др. СПб.: "Недра", 2005. 326 с.

Учебные пособия

Пикулев, В. Б.

Нанофотоника: учеб. пособие / В. Б. Пикулев, С. В. Логинова. – Петрозаводск: Изд-во ПетрГУ, 2012. – 90 с.

ISBN 8-921-8021-1476-6

Учебное пособие раскрывает современные достижения фотоники в применении к наночастицам, фотонным кристаллам и способам выхода за дифракционный предел в оптической микроскопии. Авторы дают обзор физических принципов, теоретических основ явлений и практических методов исследований, связанных с взаимодействием света и вещества. Представлена связь нанотехнологий и наиболее важных аспектов формирования оптических свойств материалов. Учебное пособие предназначено для студентов технических факультетов вузов и написано по материалам спецкурсов, читаемых магистрантам по направлениям подготовки «Физика» и «Электроника и наноэлектроника» на физико-техническом факультете ПетрГУ.

Пикулев, Виталий Борисович.

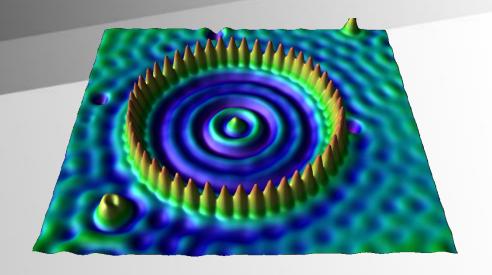
Основы работы с программами моделирования молекулярных структур [Электронный ресурс] : учебное электронное пособие / В. Б. Пикулев, С. В. Логинова ; М-во образования и науки Рос. Федерации, Федер. гос. бюджет. образоват. учреждение высш. образования Петрозавод. гос. ун-т. — Электрон. дан. — Петрозаводск : Издательство ПетрГУ, 2017. — 1 электрон. опт. диск (CD-R) ; 12 см. — Систем. требования : РС, МАС с процессором Intel 1,3 ГГц и выше ; Windows, MAC OSX ; 256 Мб; видеосистема : разрешение экрана 800×600 и выше ; графический ускоритель (опционально) ; мышь или другое аналогичное устройство. — Загл. с этикетки диска.

ISBN 978-5-8021-2300-3

В учебном пособии рассмотрены возможности ряда современных программ квантово-химических вычислений, описаны их интерфейсы, способы формулировки задач для моделирования, форматы файлов данных, взаимодействие с поисковыми интерфейсами и открытыми базами данных по структуре и свойствам материалов.

Издание адресовано обучающимся по направлениям подготовки «Техническая физика» (бакалавриат), «Электроника и наноэлектроника» (бакалавриат и магистратура). Может оказаться полезным для аспирантов и научных сотрудников, специализирующихся в области физики наноструктур и материаловедения.

Nanoelectronics



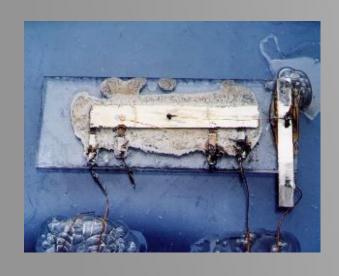
Наноэлектроника — область науки и техники, занимающаяся созданием, исследованием и применением электронных приборов с нанометровыми размерами элементов, в основе функционирования которых лежат квантовые эффекты. Типичные размеры функциональных элементов, для которых применимо понятие "наноэлектроника" — от единиц до сотен нанометров.

Nanotechnology

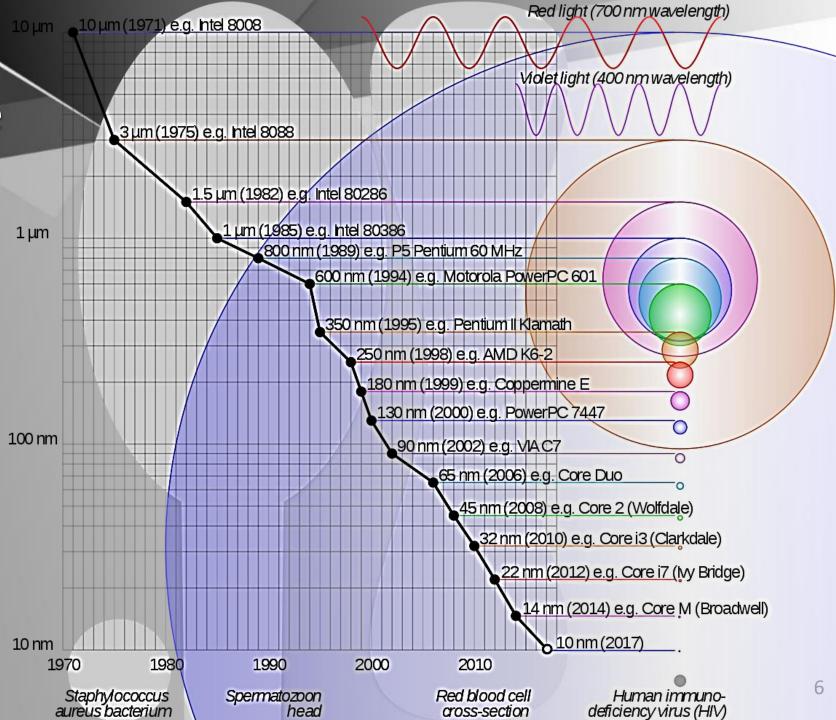
В соответствии с международным стандартом ISO TC229 под нанотехнологиями понимается следующее:

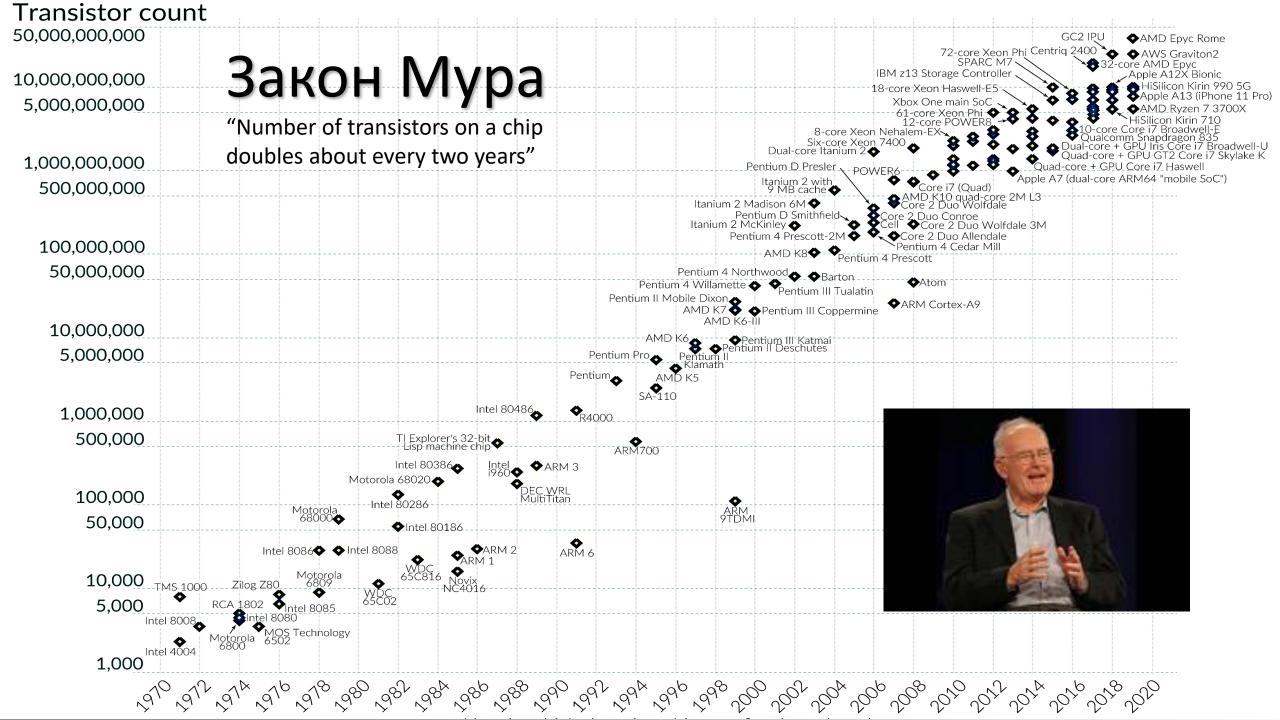
- Understanding and control of matter and processes at the nanoscale, typically, but not exclusively, below 100 nanometers in one or more dimensions where the onset of size-dependent phenomena usually enables novel applications,
- Utilizing the properties of nanoscale materials that differ from the properties of individual atoms, molecules, and bulk matter, to create improved materials, devices, and systems that exploit these new properties.

Прогресс в наноэлектронике



The first integrated circuit (Texas Instruments, 1958)





Индустрия нанотехнологий

Физические явления в квантоворазмерных структурах

Поведение подвижных носителей заряда (электронов и дырок) в низкоразмерных структурах в преобладающем большинстве случаев определяется следующими группами фундаментальных явлений:

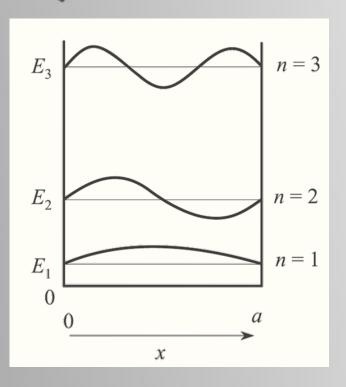
- Квантовое ограничение (quantum confinement) свободного движения носителей заряда
- Баллистический транспорт (ballistic transport), или перенос носителей заряда без их рассеяния
- Туннелирование (tunneling) через потенциальный барьер и надбарьерное отражение
- Спиновые эффекты (spintronics), квантовые вычисления (quantum computation) и квантовая интерференция

Из базовых принципов теории твёрдого тела следует, что нарушение пространственной периодичности кристаллической решётки в пористом слое и ограничение движения носителей заряда хотя бы в одном из пространственных направлений должны трансформировать структуру энергетических зон для электронов и дырок.

Для свободного электрона:

$$E = \frac{\hbar^2}{2m^*} (k_x^2 + k_y^2 + k_z^2)$$

$$N(E) = \frac{m^* \sqrt{2m^*E}}{\pi^2 \hbar^3}$$



$$E_1 = \frac{\hbar^2 \pi^2}{2m^* a^2}$$

для
$$n = 1$$

направлении, ограничивающим свободное движение электрона (в геометрический котором размер структуры сравним с длиной волны де Бройля) потенциальная энергия электрона может быть представлена в бесконечно глубокой виде прямоугольной потенциальной ямы колодцем). (квантовым Условием существования электрона в такой потенциальной яме являются стоячие волны с $\lambda_n = 2a/n$, где n = 1, 2, ... квантовое число.

Тогда $k_n = 2\pi / \lambda_n = n\pi / a$.

Для электрона в квантовом колодце:

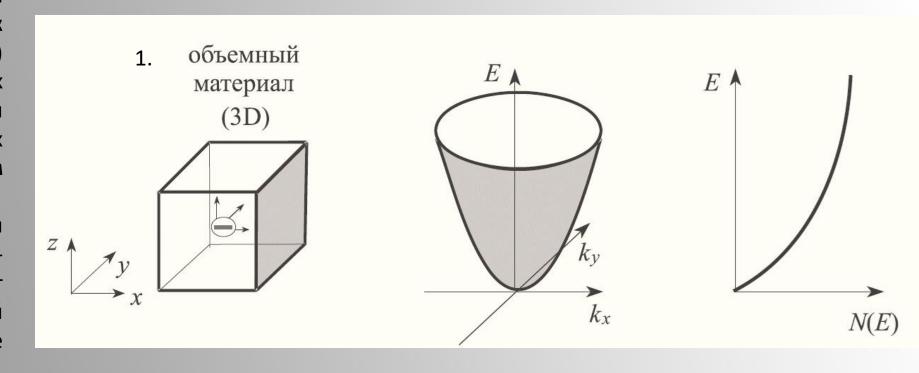
$$E = \frac{\hbar^2 k_n^2}{2m^*} = \frac{n^2 \pi^2 \hbar^2}{2m^* a^2}$$

Расстояние между энергетическими уровнями зависит от профиля ямы; так для параболической ямы $\Delta E = {\rm const}$

Классификация элементарных низкоразмерных структур

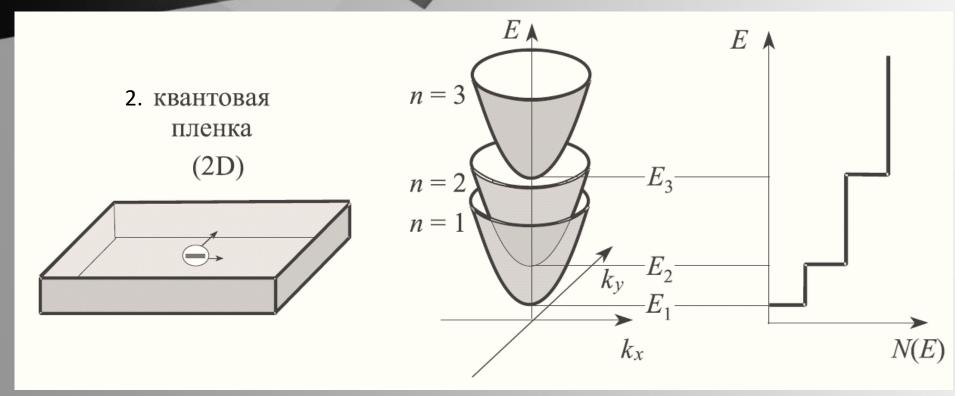
Ограничение движения носителей заряда, приводящее к конечному (ненулевому) минимальному значению их энергии и к дискретности энергий разрешённых состояний, называют квантовым ограничением.

Ненулевая минимальная энергия отличает квантовомеханическую систему от классической — для последней энергия частицы на дне потенциальной ямы равна нулю.



квантового ограничения нет

Квантовая плёнка

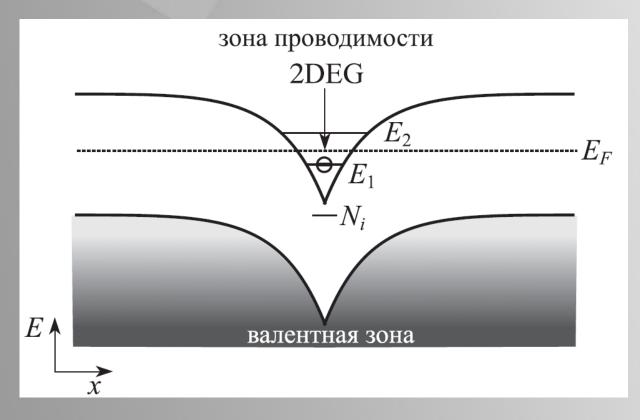


квантовое ограничение действует в одном направлении: двумерный электронный газ

$$E = \frac{\hbar^2 \pi^2 n^2}{2m^* l_z^2} + \frac{\hbar^2 k_x^2}{2m^*} + \frac{\hbar^2 k_y^2}{2m^*}$$

$$N(E) = \frac{m^*}{\pi \hbar^2 l_z} \sum_{i} \Theta(E - E_i)$$

Квантовая плёнка — пример



Дельта-легированные структуры:

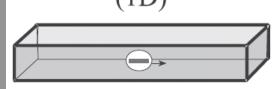
моноатомный слой кремния, нанесённый на подложку GaAs и затем накрытый эпитаксиальным GaAs.

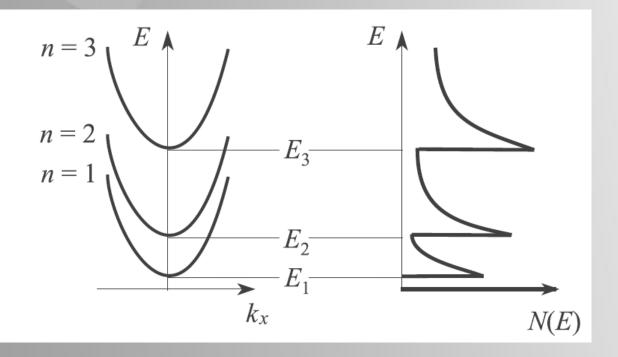
Полупроводниковая структура с существенно неравномерным профилем распределения легирующей примеси. Электрическое поле ионизованных примесных атомов экранируется полем свободных носителей заряда.

Квантовая проволока

3. Квантовая проволока

(1D)



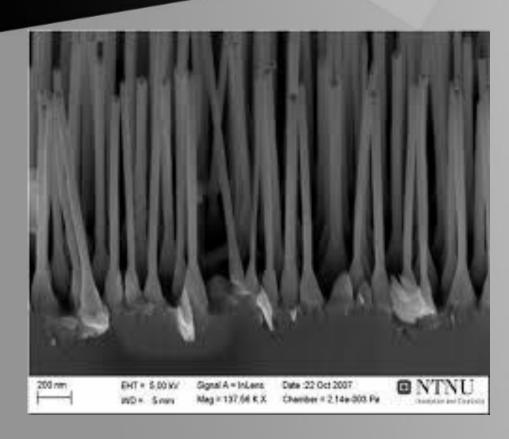


Вклад в энергию носителя заряда дают кинетическая составляющая вдоль оси проволоки и квантованные значения в двух других направлениях.

$$E = \frac{\hbar^2 \pi^2 n_1^2}{2m^* l_y^2} + \frac{\hbar^2 \pi^2 n_2^2}{2m^* l_z^2} + \frac{\hbar^2 k_x^2}{2m^*}, n_1 = 1, 2, ...; n_2 = 1, 2, ...$$

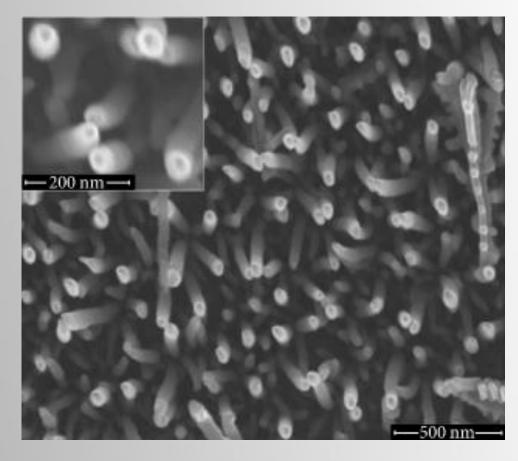
$$N(E) = \frac{\sqrt{2m^*}}{\pi \hbar l_y l_z} \sum_{i,j} (E - E_{i,j})^{-1/2}$$

$$N(E) = \frac{\sqrt{2m^*}}{\pi \hbar l_y l_z} \sum_{i,j} (E - E_{i,j})^{-1/2}$$

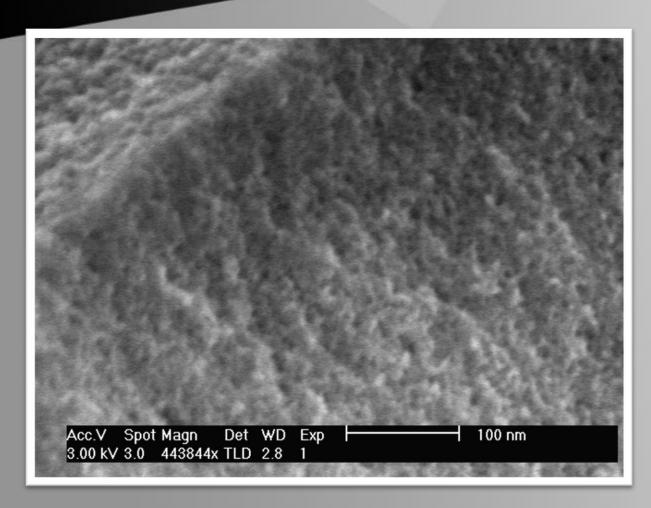


SEM of 20 nm diameter GaAs nanowires

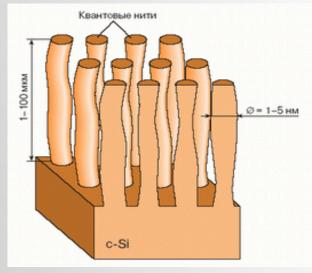
Квантовая проволока — примеры с РЭМ



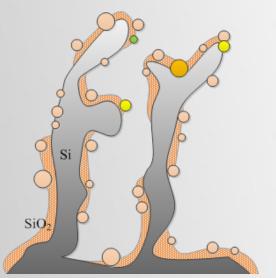
Top view SEM of carbon nanostructures grown on Si substrate



Квантовая проволока – пример: нанопористый кремний



модель и реальность

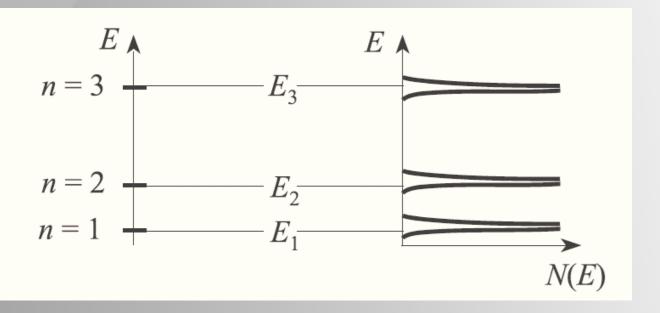


Квантовая точка

квантовая

точка

(0D)



$$E = \frac{\hbar^2 \pi^2}{2m^* a^2} (n_1^2 + n_2^2 + n_3^2)$$

$$E_1 = \frac{3\hbar^2 \pi^2}{2m^* a^2}$$

Справедливо для квантовых точек в форме куба со стороной *а*

$$N(E) = \frac{2}{a^3} \sum_{i,j,k} \delta(E - E_{i,j,k})$$

$$E_n = \frac{\xi_n^2 \cdot h^2}{8 \, m^* r^2}$$

для сферической наночастицы радиуса r, здесь ξ_n — корни n-го порядка функции Бесселя

Квантовая точка

$$E_1 = \frac{h^2}{8 \, m^* r^2}$$

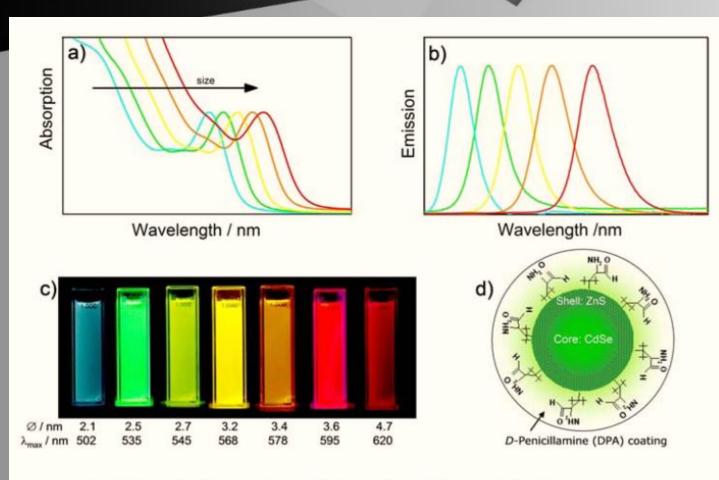
т.е. состояние с минимальной энергией в сферической квантовой точке в случае r = a/2 выше, чем в кубической.

Минимальная энергия, необходимая для создания электрондырочных пар в квантовой точке, включает, как минимум, три составляющие:

- \circ ширина запрещённой зоны $E_{q \ bulk}$ материала
- о минимальная энергия в соответствии с условиями квантового ограничения для электрона и дырки $E_{e\ conf}$ + $E_{h\ conf}$
- \circ кулоновское взаимодействие между электроном и дыркой (формирование связанного экситона) E_{x}

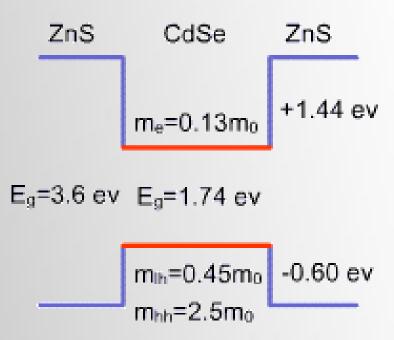
$$E_{eh} = E_{g \ bulk} + \frac{h^2}{8r^2} \left(\frac{\xi_{n_e}^2}{m_e^*} + \frac{\xi_{n_h}^2}{m_h^*} \right) - \frac{e^2}{2\varepsilon r}$$

Это выражение определяет люминесцентные свойства квантовых точек



Semiconductor nanocrystals and metal nanoclusters exhibit bright luminescence and high photostability.

Квантовая точка: люминесценция



По мере увеличения размера квантовых точек уменьшается ширина разрешённых оптических переходов, и максимум люминесценции смещается в длинноволновую область спектра.

Квантовая точка: люминесценция

Люминесценция коллоидных растворов кремниевых наночастиц с диаметрами 2.9, 2.15, 1.67 и 1 нм (на фото справа налево) под действием УФ возбуждения с длиной волны 365 нм.

Зафиксирована люминесценция отдельных нанокристаллов кремния (2005 г.) с очень узкими полуширинами пиков ФЛ (2 мэВ при 35 К и 150 мэВ при 300 К). Наблюдаемый в обычных условиях широкий пик обусловлен статистическим распределением размеров и формы частиц.

Баллистический транспорт

$$\frac{\partial f(k,r)}{\partial t} = -\left(v \cdot \nabla_r f(k,r,t)\right) - \hbar^{-1} F \cdot \nabla_r f(k,r,t) + \int_{V_B} w(k,k^*) \left(f(k^*,r,t) - f(k,r,t)\right) \frac{\partial V_{k^*}}{\partial t^3}$$

Особенности транспорта носителей заряда в твёрдотельных структурах во многом определяются процессами их рассеяния при движении из одной области структуры в другую.

Для макроскопических систем (bulk crystal) справедливо следующее:

- 1. средняя длина свободного пробега электронов меньше размера кристалла
- 2. процессы рассеяния заряда локальны
- 3. рассеяние происходит непрерывно во времени
- 4. рассеяние, как и другие процессы возмущения движения электронов малы по величине, так что вызванные ими отклонения электронной системы от равновесия можно рассматривать независимо друг от друга
- 5. существенно важными являются события, происходящие за времена, превышающими среднее время рассеяния носителей заряда.

Такие допущения позволяют использовать для описания движения носителей заряда в макроскопических системах кинетическое уравнение Больцмана. Однако в наноструктурах условия для транспорта носителей заряда существенно иные. В структурах с размером меньше длины свободного пробега перенос носителей заряда происходит без их рассеяния. Такой перенос называют баллистическим транспортом.

Баллистический транспорт

- Средняя длина свободного пробега при упругом рассеянии – это среднее расстояние, которое проходит носитель заряда между двумя последовательными актами упругого рассеяния
- Средняя длина свободного пробега при неупругом рассеянии – это расстояние, на котором электронная волна изменяет свою фазу вследствие рассеяния. Обычно она больше I_e
- \circ Длина фазовой когерентности расстояние, на котором электронная волна сохраняет свою фазу. Она меньше, чем I_{in}
- о Длина волны Ферми

$$\lambda_F = \frac{2\pi}{k_F}$$

Основные определения

Основные эффекты, относящиеся к баллистическому транспорту, определяются соотношением между размерами структуры, в которой имеет место перенос носителей заряда, и характерными длинами свободного пробега.

$$l_e = v_F \cdot au_{SC}$$
 время рассеяния $v_F = \sqrt{rac{2E_F}{m^*}}$ скорость ферми

$$l_{in} = v_F \cdot au_{oldsymbol{arphi}}$$
 время релаксации фазы

$$l_{arphi}=\sqrt{D au_{arphi}}$$
 — D — коэффициент диффузии $k_{E}=rac{3\pi^{2}N_{e}}{2\pi^{2}}$ волновой вектор Ферми

Основные определения

Баллистический транспорт

Сравнивая размер наноструктуры со средней длиной свободного пробега электронов и с длиной волны Ферми (которые определяются характеристиками материала), можно предсказать основные особенности движения носителей заряда в этой наноструктуре.

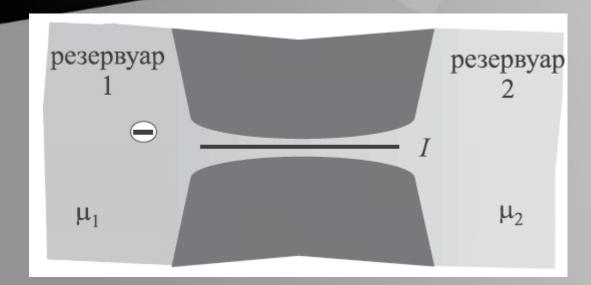
В металлах средняя длина свободного пробега электронов даже при низких температурах не превышает 10 нм, в связи с чем баллистический транспорт в металлических наночастицах с диаметром более 10 нм не реализуется. Длина волны Ферми в металлах обычно 0.1-0.2 нм, поэтому квантованием энергетических уровней (при температурах существенно выше 0 К) можно пренебречь. Энергетический спектр металлических квантовых точек определяется преимущественно кулоновским взаимодействием.

Средняя длина свободно пробега в полупроводниках может достигать нескольких мкм (100 нм в Si и 120 нм в GaAs). Следовательно, в полупроводниковых структурах баллистический транспорт легко реализуется. Длина волны Ферми достигает 30-50 нм, т.е. квантование энергии становится существенным фактором.

Баллистический транспорт

Параметр, единица измерения	Si	GaAs
Скорость Ферми, 10^7 см/с	0,97	2,76
Длина волны Ферми, нм	39	39
Время рассеяния, 10^{-12} с	1,1	3,8
Время релаксации фазы, 10^{-12} с	5,7	18
Коэффициент диффузии, $10^3 \text{ cm}^2/\text{c}$	0,52	1,45
Средняя длина свободного пробега	107	1050
при упругом рассеянии, нм		
Средняя длина свободного пробега		
при неупругом рассеянии, нм	500	5000
Длина фазовой когерентности, нм	540	1620
Эффективная масса, m_0	0,19	0,067
Время релаксации спина	14-60 мс*	5-80 пс

Баллистический транспорт



- Рассеяние носителей заряда в канале отсутствует
- Все электроны, вышедшие из канала, попадают в резервуар
- \circ T = 0 K, так что резервуары заполнены электронами вплоть до μ_1 и μ_2 , причём $\mu_1 > \mu_2$.

Проводимость

Идеальный баллистический транспорт носителей заряда в наноструктурах характеризуется универсальной баллистической проводимостью, которая не зависит от типа материала и определяется лишь фундаментальными константами.

$$I =
u e \cdot (\mu_1 - \mu_2) rac{dn}{d\mu}$$
 - ток между резервуарами

В квантовом "шнуре" $dn/d\mu = 1/\pi\hbar v$

$$\mu_1 - \mu_2 = e(V_1 - V_2)$$
 - где V_1 и V_2 – электрические потенциалы в системе

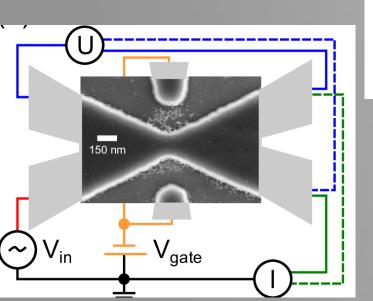
$$G = I/(V_1 - V_2) = e^2/\pi \hbar = 2e^2/h$$

Уравнение проводимости идеального одномерного проводника в баллистическом режиме

Величину e^2/h = 38.740 мкСм называют квантом проводимости. Соответствующее сопротивление равно h/e^2 = 25812.807 Ом.

Баллистический транспорт

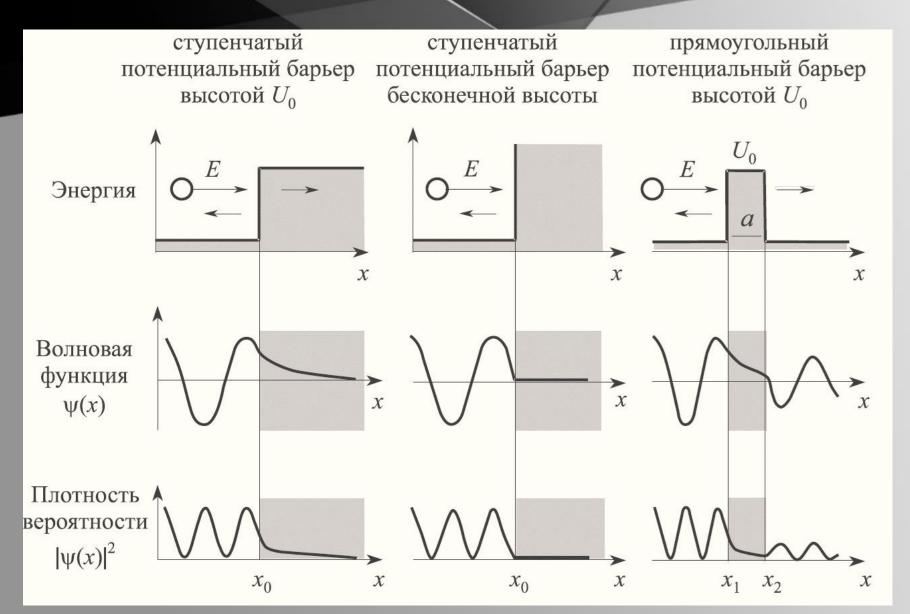
С помощью затвора специальной формы создаётся сужение в слое двумерного электронного газа — проводящий канал. Напряжение $V_{\rm g}$ определяет ширину канала.



Квантовый точечный контакт



Если ширина канала возрастает, то увеличивается количество разрешённых состояний для электронов в канале. Поскольку проводимость квантуется в единицах $2e^2/h$, то на кривой проводимости появляются «ступеньки».

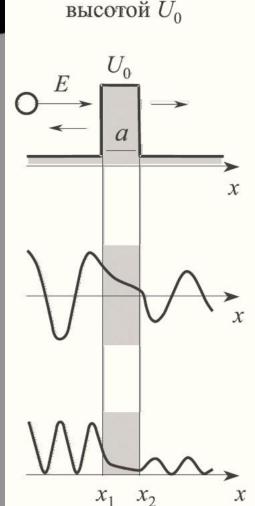


Туннелирование есть перенос носителей заряда через область, ограниченную потенциальным барьером, высота которого больше полной энергии носителя заряда, или проникновение в эту область.

В случае, если потенциальный барьер имеет конечную высоту, дополнительно проявляется квантовый эффект надбарьерного отражения.

Прохождение частицы через потенциальный барьер

прямоугольный потенциальный барьер высотой U_0



Пусть квантовая частица взаимодействует с прямоугольным потенциальным барьером шириной a, высота которого U_0 больше её энергии E. Решение уравнения Шрёдингера $\hbar^2 d^2 d\nu(x)$

 $-\frac{\hbar^2}{2m^*}\frac{d^2\psi(x)}{dx^2} + U(x) = E \cdot \psi(x)$

в каждой из трёх областей (перед барьером, внутри него и за ним) имеет вид:

$$\psi_{1} = \exp(ik_{1}x) + B_{1}\exp(-ik_{1}x), \quad x < x_{1},$$

$$\psi_{2} = A_{2}\exp(-\zeta x) + B_{2}\exp(\zeta x), \quad x_{1} < x < x_{2},$$

$$\psi_{3} = A_{3}\exp(ik_{1}x), \quad x > x_{2},$$

$$k_{1} = (1/\hbar)\sqrt{2mE}$$

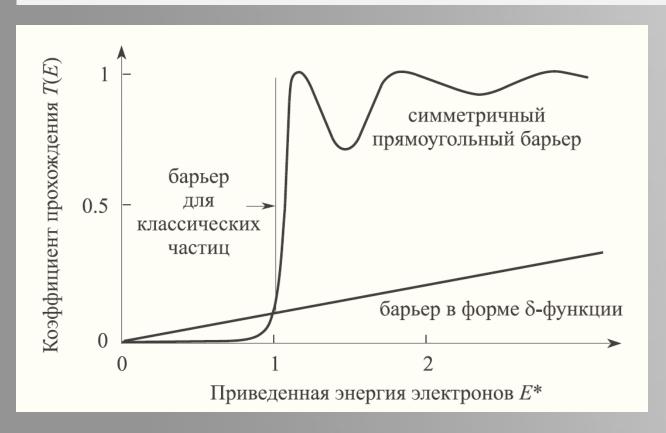
$$\zeta = \frac{1}{\hbar}\sqrt{2m(U_{0} - E)}$$

прошедшая через барьер волна

Первый коэфф. нормирован на 1. Первое слагаемое — падающая волна, второе — отражённая. Постоянные A, B определяются из условий непрерывности волновой функции и её первой производной в точках $x = x_1$ и $x = x_2$.

Прохождение частицы через потенциальный барьер

Для количественного описания эффекта туннелирования вводят понятие **коэффициента туннельной прозрачности** T(E) барьера, который равен отношению плотности потока прошедшей волны к плотности потока падающей волны. **Коэффициент отражения** R(E) носителя заряда от потенциального барьера определяется, в свою очередь, отношением плотности отражённого потока к плотности падающего. При этом R(E) = 1 - T(E).



Для рассмотренного выше случая:

$$T(E) = \frac{4k_1^2 \zeta^2}{(k_1^2 + \zeta^2)^2 \sinh^2(a\zeta) + 4k_1^2 \zeta^2}$$

Для δ-образного барьера:

$$T(E) = \left(1 + \frac{2\pi^2 ma^2 U_0^2}{h^2 E}\right)^{-1}$$

Для барьера произвольной формы:

$$T(E) \cong \exp\left(-\frac{2}{\hbar} \int_{x_1}^{x_2} \sqrt{2m[U(x) - E]} dx\right)$$

Специфические туннельные эффекты

Процесс туннелирования электронов в твёрдотельных структурах характеризуется временами порядка 10^{-13} - 10^{-15} с. Время туннелирования $\tau=\hbar/\sqrt{E(U_0-E)}$ зависит только от энергии частицы и высоты барьера, но не зависит ни от массы частицы, ни от ширины потенциального барьера (парадокс Хартмана).

В низкоразмерных структурах при туннелировании наблюдается перенос дискретного заряда, что обнаруживает себя в классе явлений, обобщённых понятием "одноэлектронное туннелирование".

В наноструктурах, содержащих магнитные и немагнитные материалы, определенная спиновая поляризация электронов оказывает влияние на вероятность их туннелирования через потенциальные барьеры. Это явление лежит в основе эффекта гигантского магнетосопротивления и других эффектов из области спинтроники.

Туннельный перенос носителей заряда через потенциальный барьер с определённого уровня в эмиттирующей области на энергетически эквивалентный ему уровень в квантовом колодце происходит с сохранением энергии и импульса электрона. Такое совпадение уровней приводит к возрастанию туннельного тока (эффект резонансного туннелирования).

Cracu6o sa shunahue!

