
Лабораторная работа № 2.

В данной работе представлена пошаговая инструкция по работе с MongoDB. Все
предварительные замечания, настройки системы и ввод данных были сделаны в работе № 1.

1. Введение.
В этой лабораторной работе будет показано, как изменять структуру и содержание
документов в коллекции MongoDB, а также рассмотрены способы работы с датами в
документах MongoDB.

2. Обновление одного документа в коллекции.
Будем использовать уже созданную вами ранее коллекцию books. Давайте уточним жанр
книги «Убить пересмешника» Харпер Ли. Пусть это будет детектив.

Внесём изменения следующим образом:

db.books.updateOne(

 { title: "To Kill a Mockingbird" },

 { $set: { genres: ["Detective"] } }

);

Ищем документ по названию произведения (оно у нас теперь не повторяется). Конструкция
$set устанавливает новое значение поля. Мы оставляем значение в виде массива (на всякий
случай). В результате получился следующий документ:

Однако для этого произведения было бы логично оставить и тэг «классика». Поэтому
добавим соответствующий элемент в массив genres:

db.books.updateOne(

 { title: "To Kill a Mockingbird" },

 { $push: { genres: "Classic" } }

);

После этого массив genres будет иметь два значения: ['Detective', 'Classic'].

Теперь заменим в массиве жанров романа Джорджа Оруэлла «1984» значение «Science
Fiction» на «Classic». Для этого обратимся к элементу массива 1 (нумерация массивов
начинается с нуля):

db.books.updateOne(
 { title: "1984" },
 { $set: { "genres.1": "Classic" } }
);

Посмотрите, всё ли получилось в обновлённом документе так, как было задумано.

Теперь удалим в документе о книге «Великий Гэтсби» из массива genres элемент 'Fiction'.
Сделаем это так:

db.books.updateOne(

 { title: "The Great Gatsby" },

 { $pull: { genres: "Fiction" } }

);

! Замените значение в поле stock для документа о книге 'Pride and Prejudice' на 8.
Внесите допустимую правку в те документы, которые вы в предыдущей работе
записали в коллекцию books.

3. Обновление нескольких документов в коллекции.
Для одновременной правки нескольких документов MongoDB предоставляет метод
updateMany(). Для того, чтобы изменить названия полей и добавить новые поля, сначала
отключим схему валидации и индекс, привязанный к полю title:

db.runCommand({
 collMod: "books",
 validator: {}
});

Индекс, привязанный к _id, удалять не надо. Имя индексного файла у вас может оказаться
другим:

Теперь можно менять структуру документов в коллекции. Предлагается название поля «title»
изменить на «title_eng», а в каждый документ коллекции books добавить текстовое поле с
именем «title_rus», куда занести русское название произведения.

Изменяем имя поля (обязательно контролируйте результат применения этой и следующей
команд):

db.books.updateMany(
 {}, // Фильтр {} означает "все документы в коллекции"
 {
 $rename: {
 "title": "title_eng"
 }
 }
);

Теперь добавляем новое поле:

db.books.updateMany({ }, { $set: { title_rus: null } });

Поскольку русских названий ещё не введено, по умолчанию в соответствующее поле
записываем значение null.

! Используя updateOne(), добавьте в созданную таблицу русские переводы названий
произведений. Если в введённых вами книгах были русские заголовки, переместите их
в поле title_rus и дайте им английский перевод в поле title_eng. После этого вновь
проиндексируйте коллекцию по полю title_eng. Постарайтесь не прибегать к помощи
интерактивных инструментов MongoDB Compass — сделайте всё с помощью
командной строки.

4. Использование дополнительных операторов обновления.
Будем использовать коллекцию employees из предыдущей работы. Увеличим зарплаты (поле
salary) всем сотрудникам на 10% (т. е. умножим каждую зарплату на 1.1). Решение:

db.employees.updateMany({}, {$mul: {salary: 1.1} });

! Используя ту же коллекцию, уменьшите зарплату сотрудникам отдела HR на 5000.
Используйте вместо $mul ключевое слово $inc для увеличения значения в поле на
указанное число.

Опция "Upsert" (обновление или вставка) — это особый тип операции обновления, который
либо обновляет документ, если он существует, либо вставляет новый, если его нет. Это
полезно для того, чтобы избежать раздельной логики "проверить, затем вставить" и
обеспечивает атомарность операций с базой данных.

Добавим вновь безвременно ушедшего в первой работе сотрудника в коллекцию employees.
Для этого поступаем так:

db.employees.updateOne(

{ name: "John Doe"},

{$set: {age: 25, department: "Sales", salary: 55000, status: "returned" }},

{upsert: true}

);

Поскольку ни один документ не соответствовал фильтру, был создан новый. Если бы этот
документ существовал, значения полей просто изменились бы в соответствии с указанными.

Присмотритесь: новый документ с информацией о Джоне Дое содержит одно лишнее поле
"status", которого нет у других сотрудников. Исправим эту особенность, удалив лишнее поле:

db.employees.updateOne(
 { name: "John Doe" },
 { $unset: { status: "Здесь может быть любое значение" } }
);

5. Работа с датами.

! Создайте новую коллекцию с именем events. Каждый документ будет представлять некое
событие, которое произошло в определённое время. MongoDB хранит даты как объекты
BSON Date, которые вы можете создать с помощью конструктора new Date().

Примерный вид документов для коллекции events:

1. Первый документ использует строку конкретной даты-времени в формате ISO-8601

{
 event_name: "Conference",
 date: new Date("2024-06-15T10:30:00Z")
}

2. Второй документ использует текущую дату-время.
{
 event_name: "System Maintenance",
 timestamp: new Date()
}

3. Третий документ использует временную метку эры Unix, представляющую собой
количество миллисекунд от начала 1970 года.
{
 event_name: "Project Deadline",
 timestamp: new Date(1718476800000)
}

4. Ещё несколько сходных по виду документов:
{
 event_name: "Summer Conference",
 date: new Date("2024-07-15T09:00:00Z")
}

5.
{
 event_name: "Winter Workshop",
 date: new Date("2024-01-20T14:30:00Z")
}

6.
{
 event_name: "Spring Meetup",
 date: new Date("2024-04-10T11:15:00Z")
}

Посмотрим, как будет выглядеть вывод первых трёх документов этой коллекции с помощью
цепочки методов find().limit(3):

Найдем все события, которые произошли после 1 июня 2024 года:

Обратите внимание, документ с полем timestamp в выборку не попал, поскольку условие
ставилось на поле с именем date. Если бы мы захотели расширить условие по выбору дат на
два этих поля, то написали бы так:

db.events.find({$or:
 [
 {date: {$gt: new Date("2024-06-01") }},
 {timestamp: {$gt: new Date("2024-06-01") }}
]
});

Здесь мы применили синтаксическую конструкцию с условным оператором $or, банально
предполагая, что в одном документе не будут встречаться сразу два поля date и timestamp,
поскольку в противном случае в предметной области базы данных необходимо задать какую-
то дополнительную логику обработки этих полей.

С помощью ключевых слов $and, $or, $nor, $not с использованием представленного выше
специфического синтаксиса можно создавать достаточно сложные логические конструкции.

! Напишите запрос, который находит события, которые произошли между 31 января и
15 июня 2024 года включительно. Попробуйте сделать 2 варианта запроса: с $and и без
$and.

6. Форматирование дат при выводе.
JavaScript имеет большое количество инструментов для отображения даты и времени в
различных форматах. Воспользуемся лишь некоторыми возможностями, типичными для
MongoDB. Давайте отформатируем поле date наших событий в формат "день-месяц-год" без
указания времени:

db.events.aggregate([
 {
 $project: {
 _id: 0,
 event_name: 1,
 'дата': {$dateToString: {format: "%d-%m-%Y", date: "$date" }}
 }
 }
]);

Здесь aggregate() создаёт контейнер для размещения набора операций, $project задаёт
структуру формируемого документа, date: "$date" указывает входное поле даты из
исходного документа, при этом префикс $ указывает на путь к полю. При этом поля
"timestamp" этим запросом, естественно, не обрабатываются.

Вы также можете извлекать отдельные компоненты даты, такие как год или месяц, используя
такие операторы как $year, $month, $dayOfMonth и др.

db.events.aggregate([
 {
 $project: {
 event_name: 1,
 год: { $year: "$date" },
 месяц: { $month: "$date" },
 день: { $dayOfMonth: "$date" }
 }
 }
]);

! Используя знания основ языка JavaScript, напишите запрос, который будет
форматировать вывод даты и времени, обрабатывая как поле date, так и поле
timestamp, и вывод которого будет аналогичен представленному на следующем
скриншоте. Для облегчения написания такого запроса рекомендуется пользоваться
текстовыми редакторами, поддерживающими комфортную работу с JavaScript,
например, Microsoft VS Code.

Сортировка по дате ничем не будет отличаться от сортировки по другим типам данных.
Чтобы отсортировать документы, добавьте метод sort() к запросу find(). В аргументе метода
sort() ключевое поле — поле для сортировки, поле значения — порядок сортировки
(значение 1 указывает на порядок от ранних к поздним, а -1 — от поздних к ранним).

Следующий запрос отсортирует коллекцию events по возрастанию даты, при этом не будут
выведены документы, в которых нет поля date:

db.events.find({date: {$exists: true}}).sort({date: 1})

7. Итоговое задание.

! Напишите один либо несколько запросов, которые введут для всех документов
коллекции events новое поле status и поместят в это поле значение "archived", если дата
документа старше 1 января 2025 года, и значение "actual" в противном случае.
Анализировать нужно как поле data, так и поле timestamp. Ну и, конечно же, запросы
надо писать так, как будто у вас не 6, а 6 миллионов документов.

	1. Введение.
	2. Обновление одного документа в коллекции.
	3. Обновление нескольких документов в коллекции.
	4. Использование дополнительных операторов обновления.
	5. Работа с датами.
	6. Форматирование дат при выводе.
	7. Итоговое задание.

