
Лабораторная работа № 1.

В данной работе представлена пошаговая инструкция по работе с MongoDB. Вы будете
использовать клиентское приложение MongoDB Compass для создания базы данных,
добавления коллекции, вставки и удаления документов и выполнения базовых CRUD-
операций по управлению данными.

1. Введение.
Убедитесь, что на вашем компьютере имеется приложение MongoDB Compass и запустите
его. Добавьте новое соединение: адрес сервера 172.20.1.176, порт 27017, имя соединения
указываете любое, на вкладке Advanced Connection Options/Authentication указываете имя
пользователя и пароль, которые получили у преподавателя. В поле Authentication Database
указываете имя вашей базы данных, которое совпадает с вашим логином. Для этой базы у вас
будут максимальные привилегии, к остальным — доступ только на чтение. Если компьютер
является общедоступным, созданный вами аккаунт может быть быстро скомпрометирован,
поэтому в конце занятия имеет смысл его удалить, чтобы никто не смог случайно или
намеренно повредить результаты вашей работы.

Если вы всё сделали правильно, после нажатия кнопки "Save & Connect" установится
соединение с базой данных. В левой панели окна нажмите на кнопку "Open MongoDB Shell"
(показана красным кружком на скриншоте), в результате запустится терминальное окно
mongosh, в котором вы и будете работать.

Подсказка test> указывает, что вы в настоящее время подключены к базе данных по
умолчанию. Чтобы переключиться на вашу базу данных, используйте команду use имяБД.
Ваша база данных в левой панели окна показана серым цветом, поскольку в ней нет ещё ни
одной коллекции. В данном тексте работа с MongoDB будет проиллюстрирована от лица
пользователя с логином std-01.

Если на компьютере отсутствует (или нет возможности установить) приложение MongoDB
Compass, используйте программу mongosh. Она инсталлируется даже под старые версии
операционных систем и реализует исключительно интерфейс командной строки к СУБД
MongoDB. Строка подключения mongosh к СУБД будет выглядеть следующим образом:
mongosh mongodb://имя:пароль@172.20.1.176:27017/имя. Под словом "имя" понимается ваш
логин, оно же — имя вашей базы данных.

2. Создание коллекции и вставка документа.
Коллекция — это группа документов MongoDB, примерно эквивалентная таблице в
реляционной базе данных. Метод insertOne(); добавляет один документ в коллекцию.
Введите в коллекцию books информацию о книге так, как представлено на скриншоте, при
этом коллекция будет создана автоматически.

Вставленный документ — это всегда BSON-объект, который представляет собой бинарно-
кодированный текст в формате, очень похожем на JSON. После успешной вставки документа
MongoDB возвращает информацию, подтверждающую операцию и содержащую уникальный

идентификатор (_id) только что вставленного документа. Посмотреть, какие коллекции
существуют в базе данных, можно с помощью команды
show collections.

Для одновременного добавления нескольких документов MongoDB предоставляет метод
insertMany(). Это известно как операция пакетной вставки (bulk insert), которая сокращает
количество сетевых обращений к базе данных. Добавьте ещё информацию о трёх книгах (три
документа) в коллекцию books:

! Здесь и далее цветом и знаком восклицания выделены задания, которые должны
быть сделаны самостоятельно, а полученные результаты представлены в отчёте по
работе. Введите в коллекцию book ещё несколько документов, содержащих
информацию о любых выбранных вами книгах так, чтобы общее количество книг
было больше десяти.

Подсчитайте общее количество документов в коллекции с помощью команды
db.books.countDocuments();

3. Просмотр введённых данных.
Для этой цели MongoDB предоставляет мощный метод find(). Чтобы извлечь все документы
из коллекции books, используйте метод find() без каких-либо аргументов:

db.books.find();

Чаще всего требуется находить документы, соответствующие определенным критериям.
Например, чтобы найти все книги, опубликованные до 1950 года, вы можете использовать
фильтр запроса с оператором $lt (меньше чем):

db.books.find({ year: { $lt: 1950 } });

Соответственно, условию «больше» соответствует конструкция $gt, «больше либо равно» —
$gte, равно — $eq. Иногда нужно получить только определенные поля из документов, а не
весь документ целиком. Это называется проекцией. Чтобы получить только title (название) и
author (автор) всех книг, опубликованных до 1950 года, вы можете добавить документ
проекции в качестве второго аргумента к find():

db.books.find({ "year": {$lt: 1950}}, {"title": 1, "author": 1, "_id": 0});

В описании проекции 1 означает "включить это поле", а 0 — "исключить это поле". По
умолчанию поле _id всегда включается, поэтому мы явно исключаем его с помощью _id: 0.

! Создайте и проверьте синтаксис команды find(), с помощью которой можно вывести
названия книг, написанных в жанре антиутопии.

4. Простое обеспечение корректности данных.
Один из способов обеспечить ее — предотвратить дублирование записей. Например, логично
предположить, что в коллекции book не должно быть двух книг с одинаковым названием. Для
этого создадим уникальный индекс по полю title.

db.books.createIndex({ title: 1 }, { unique: true });

После этого попробуем ввести в коллекцию документ-дубликат:

db.books.insertOne({
 title: "1984",
 author: "George Orwell",

 year: 1949,
 genres: ["Dystopian", "Classic"],
 stock: 20
});

Эта операция завершится неудачей. MongoDB выдаст MongoBulkWriteException с кодом
ошибки E11000, который указывает на нарушение ограничения уникальности ключа. Это
ожидаемое поведение подтверждает, что наш уникальный индекс работает правильно.

Попробуем ввести в коллекцию формально правильный документ, но содержащий
ошибочную информацию, которую впоследствии придётся удалить либо исправить:

db.books.insertOne({
 title: "Странная книга",
 author: "И автор странный",
 year: 2026,
 genres: ["Classic"],
 stock: 1200
});

Удалим этот документ с помощью команды deleteOne(), используя в качестве фильтра (с
целью минимизации возможных ошибок) значение _id этого документа:

Данный фрагмент кода показывает, что в терминале mongosh мы вполне можем использовать
синтаксические конструкции языка JavaScript, который является основным языком для
работы с СУБД MongoDB.

Помимо команды deleteOne(), команда deleteMany(); может удалить несколько (или все)
документы из коллекции. Используйте эти команды с осторожностью. Полностью удалить
коллекцию можно с помощью команды drop().

5. Импорт и обработка коллекции из другой базы данных.
Попробуем сделать копию коллекции из базы данных sample_guides, которая находится на
том же сервере, что и ваша база данных, и к которой вы имеете доступ только на чтение
данных. Для этого сначала перейдём в БД sample_guides и посмотрим список её доступных
коллекций:

use sample_guides;

show collections;

Обнаружилась одна коллекция по имени planet, которую вы и скопируете в свою базу данных
с помощью следующей команды:

db.planets.aggregate([{$out: {db: "std-01", coll: "planets"}}]);

Как вы понимаете, в данной команде вместо "std-01" вы указываете имя своей базы данных.
Если импорт прошёл успешно, вернитесь обратно в свою базу данных и посмотрите
результат.

sample_guides> use std-01;

std-01> show collections;
< books
< planets

! Полностью удалите из только что созданной коллекции planets описания тех планет, у
которых средняя температура на поверхности выше 150 ºС. Не забудьте в создаваемом
выражении заключить иерархический путь в кавычки. Покажите полученный
результат.

6. Создание схемы данных для контроля целостности данных.
No-SQL документная модель MongoDB отличается гибкой схемой представления данных:
например, в одной коллекции могут быть документы самой разной структуры. Однако если
предметная область вашей базы данных требует соблюдения одинаковой структуры
документов в коллекции, это можно обеспечить с помощью создания схемы данных для
проверки структурной целостности (schema validation). Это гарантирует, что все документы в
коллекции соответствуют определенному набору правил, что ведёт к уменьшению ошибок
ввода данных и обеспечивает согласованность данных.

Добавим валидатор к коллекции books. Этот валидатор потребует, чтобы каждый документ
имел поля title, author и year, а также будет обеспечивать соблюдение определенных типов
данных и диапазонов для этих полей. Используйте команду runCommand, которая запустит
изменение коллекции (collMod) для добавления валидатора (validator) в коллекцию. Текст
команды представлен на скриншоте на следующей странице.

Протестируем валидатор, попытавшись вставить документ, нарушающий правила, например,
такой:

db.books.insertOne({
 title: "The Hobbit",
 author: "J.R.R. Tolkien",
 year: 7260
});

Вставить это документ в коллекцию не удастся, СУБД выдаст ошибку: MongoServerError:
Document failed validation. Это подтверждает, что наше правило проверки схемы активно и
эффективно защищает целостность данных.

! Попробуйте ввести ещё несколько документов с заведомыми нарушениями структуры
либо диапазона значений полей. Проверьте, что валидатор работает и в этих случаях.

7. Контрольное задание.
Создайте в вашей базе данных новую коллекцию с именем employees, содержащую
следующий набор документов:

[
 { name: "John Doe", age: 25, department: "Sales", salary: 50000 },
 { name: "Jane Smith", age: 35, department: "Marketing", salary: 60000 },
 { name: "Bob Johnson", age: 45, department: "Sales", salary: 55000 },
 { name: "Alice Brown", age: 30, department: "HR", salary: 52000 }
]

Напишите команду, которая удалит из этой коллекции сотрудников отдела "Sales", чья
зарплата меньше 55 000. Приведите результаты работы этой команды.

	1. Введение.
	2. Создание коллекции и вставка документа.
	3. Просмотр введённых данных.
	4. Простое обеспечение корректности данных.
	5. Импорт и обработка коллекции из другой базы данных.
	6. Создание схемы данных для контроля целостности данных.
	7. Контрольное задание.

